y/ TECHNOLOGY

Training:
Topology

Geometry limitations

OCCT surfaces support rectangular trimming. A non-rectangular domain may arise after the Boolean
operation.

How to store the result of the cut operation?

Purpose of topology

In general, Topology is a means to describe the limitation of an object.

P

Open CASCADE Topology is used to describe:

* Boundaries of objects.

« Connectivity between objects (via common boundaries).

Open CASCADE topological entities are called shapes.

Definition of topology

Topological shapes are defined following these two concepts:

* Abstract Topology (TopoDS): defines the data structureby
describing the relation between bounded and bounding -

objects. (_Topods

Abstract topology
data structure

Example: an edge is described by its boundaries which are
vertices.

* Boundary representation (B-Rep): completes the definition

P —

of an object by associating topological and geometric (_BRep
information. Gometic by

{ '\tléiﬁepﬂlgoﬁ@lj:

Example: an edge lies on a curve and is bounded by points.

Abstract, boundary representation and algorithm classes are
grouped in different packages.

BRepPHimAPI
BRepOffsetAP]

“~_BRepFilletAPl

| Direct construction

e ——

| Boolean operation

Algorithm classes

Eliepﬂuilder;:\l;i g

 BRepTools)

‘ Set of tools

T

C TopExp)

Exploration of the graph)
data structure of shapes

(" BRepFeat)

Adwvanced Modeling
Fealures

why boundary representation?

There are several alternatives to B-Rep:

NN
* Constructive solid geometry (CSG). CSG does not allow to []= % W -
model arbitrary figures. : %3' .
. . . N
* Drawing. Drawings are not suitable for downstream \/
. . . : :&\ 30 |
engineering operations. 60
« Wireframe. Several solids may correspond to a single
wireframe model.
* Mesh. Meshes do not support curved geometry. L
B-Rep has some drawbacks. It is glassy, verbose, and complex. / /
B-Rep model uses vertices, edges, and faces as geometry N

carriers but also has special topological types. Model
complexity causes fragility.

Topological shapes

Open CASCADE Technology defines the following types
of topological shapes:

* Vertex: a point.

« Edge: a part of a curve limited by vertices.

« Wire: a set of edges (connected by their vertices).

 Face: a part of a surface limited by wires.

+ Shell: a set of faces (connected by their edges).

+ Solid: a part of space limited by shells.

« Compsolid: a set of solids connected by their faces.

« Compound: a group of any topological shapes.

Graph structure

The following graph shows an example of relations between sub-shapes of a complex shape (a solid in this
case):

Solid S
Y
Shell Sh
/ “\\ T
Face F F F
¥ Y ¥
Wire W W W
- +
E E

4 a —
Fdge E E /[tﬁ E
FNFNF N Y
Vertex ‘ VI V] |V V V V

Connectivity of shapes

Two shapes are connected if they share some bounding sub-shape(s).

Example: Let's consider two edges — €1 and ¢2. Each of them is limited by its boundaries, which are vertices
(vifand v1l forel and v2f and v21 for €2). When these two edges share a common vertex v3, they are
connected.

__e?

/\q/\ /\/\

vil VAR

el
¥\
vifl w1l |(v2f| |v2l

Hierarchy of shapes

TopoDS_Shape is the root class for all classes TopoDS_Vertex keeps information about point
of topological shapes. (zero-dimensional object).
TopoDS Vertex TopoDS_Edge keeps information about curves
___________________________ ——— (one-dimensional object). TopoDS_Wire is a
ITopoDS Edge collection of edges.

TopoDS_Shape__;TDpDDS_ere

L —) TopoDS_Face keeps information about surfaces

TopoDS Face (two-dimensional object). TopoDS_Shell is a
f — collection of faces.

?TopoDS_Shell

1TopoDS Solid TopoDS_Solid, TopoDS_Compsolid keeps
: — f information about solids.

—éTopoDS_CompSolid

TopoDS Compound TopoDS_Compound represents a shape which is
a collection of shapes.

Structure of shape

TopoDS_Shape

The TopoDS_Shape class defines a shape by:
* A TopoDS_TShape handle (TopoDS package).
* A local coordinate system (ToplLoc package).

« An orientation (TopAbs package).

TopoDS_TShape

Location é

I,
Orientation /%

4‘ TopoD

S_TShape

-

il

TopoDS_TShape: a handle class which describes the object in its
default coordinate system. This class is never used directly,
TopoDS_Shape is used.

TopLoc_Location: defines a local coordinate system which places
a shape at a different position from that of its definition.

Example: all these boxes share the same TShape but have different
locations.

®

Structure of shape

TopAbs_Orientation: describes how a shape delimits a geometry in terms of material (or inner and
outer regions).

The orientation and location parameters of the shape are also assumed to affect its sub-shapes when
considered in the context of that shape. When a shape is explored to sub-shapes, orientation, and location
of the sub-shape is combined with that of the main shape. This ensures consistent interpretation of
parameters of the sub-shape in the context of each shape that refers to it. For example, the edge shared by
two connected faces will have opposite orientations when explored in the context of those faces.

Shape manipulations

The TopoDS_Shape class and it descendants provide various
useful methods such as:
» Access to [Shape

« IsNull() - checks whether TShape is null or not.

« Nullify() -=nullifies TShape smart pointer.

» Access to location
« Location() —returns existing location.
« Move() — applies transformation to actual shape.

« Moved() - returns new shape with applied transformation.

« ShapeType() - returns the type of the TopoDS_Shape

* Shapes comparison:
« IsPartner() —the same [Shape
« IsSame() —the same TShape and location.

« Iskqual() —thesame TShape, location and orientation.

Shape1

TopoDS_TShape

Location

Orientation

Shape

TopoDS_TShape

Location

Orientation

Shape1

TopoDS_TShape

Location

Orientation

Partner

Same

Equal

Shape2

TopoDS_TShape

Location

Orientation

Shape2

TopoDS_TShape

Location

Orientation

Shape2

TopoDS_TShape

Location

Orientation

Shape downcasting

TopoDS_Shape objects are manipulated by value. That is
why special methods are implemented to supply downcast
functionality:

e TopoDS::Vertex() Returnsa TopoDS_Vertex
« TopoDS::Edge() Returnsa TopoDS_Edge
« TopoDS::Wire() Returnsa TopoDS_Wire
« TopoDS::Face() Returnsa TopoDS_Face
« TopoDS::Shell() Returnsa TopoDS_Shell
« TopoDS::Solid() Returnsa TopoDS_Solid

« TopoDS::CompSolid() Returns a
TopoDS_CompSolid

e TopoDS: :Compound() Returns a TopoDS_Compound

Note: exception is raised when an inappropriate conversion
is done.

Example: the first block is correct, but
the second is rejected by the compiler.

// Correct.
1f (aShape.ShapeType () == TopAbs VERTEX)
{
const TopoDS Vertex& aVl =
TopoDS: :Vertex (aShape) ;

// Rejected by compiler.
1f (aShape.ShapeType () == TopAbs VERTEX)
{

TopoDS Vertex aVZ = aShape;

}

Collections of shapes

The TopTools package provides:

* Classes to compute hash code for a shape with or without orientation.

 Instantiation of collections for shapes.

BRep Buillder BB;
TopTools MapOfShape anEmap = anlItl.Value();
TopTools ListlIteratorOfListOfShape anItl (anEdges);
for (;anItl.More(),;anItl.Next())

BB.Remove (aWire, anItl.Value()):

for (anItl.Initialize(edges); anItl.More();anItl.Next())
{
TopoDS Shape anEdge = anlItl.Value();
if (anEmap.Contains (ankEdge))
anEdge.Reverse () ;
BB.Add (aWire, anEdge);

Exploration tools

Exploring a topological shape means finding its sub-shapes, possibly matching specific criterion.

TopoDS_Iterator class explores the first level sub-shapes of the given shape (from the list in its
TShape).

TopExp_Explorer class explores all sub-shapes in the given shape, with a possibility to select the
kind of entities (for example, faces only).

TopExp Explorer anExp(aShape, TopAbs EDGE) ;
for (; ankExp.More(); anExp.Next ())

{
TopoDS Edge ankdge = TopoDS::Edge (ankExp.Current()):;

}
TopExp::MapShapes() method explores sub-shapes and puts them in a map (thus detecting the

same elements). /\

L4
TopExp_Explorer returns 4 vertices TopExp:: MapShapes returns 3 vertices

Exploration tools

e TopExp::MapShapesAndAncestors() method returns all the entities that reference another one.

E“ﬁ & E1 E2 E3 E4
|:1E B2 k4 gy
i B F1‘F5 F2‘F5 FS‘FS F4‘F5
r

In Open CASCADE Technology, there are no back pointers from a sub-shape to its ancestor shapes.
Instead, TopExp: :MapShapesAndAncestors() may be used to restore this information. For example,
if you want to find all faces that contain a given vertex or an edge, you may use this method.

Boundary representation

The Boundary Representation (B-Rep) describes the model objects in three dimensions.

In B-Rep modeling, entities are represented by their boundaries.

Model in 3D Faces bound model Edges bound faces

B-Rep immerses Geometry into Topology:

« Geometry: a face lies on a surface, an edge lies on a curve, and a vertex lies on a point.
« Topology: connectivity of shapes.

Thus the description of a model object becomes complete.

B-Rep description is based on:

« TopoDS package - to describe the topological structure of objects.

« Geomand Geom2d packages - to describe the geometry of these objects.

B-Rep entities

BRep_TVertex, BRep_TEdge, and BRep_TFace are defined to add geometric information
to a topological model.

BRep_TVertex, BRep_TEdge, and BRep_TFace inherit TopoDS_TShape.

The geometric information is stored in a different way according to the topological entity.
Entities that store geometric information allows to describe:

* An edge: a curve limited by vertices.
« A face: a surface limited by edges.

* A solid: space limited by faces.

Geometry in BRep__TVertex

BRep_TVertex geometry is stored as:
« A 3D point (gp_Pnt) - for all vertices

« Alist of point representations that can be:
* A point on a curve (Geom_Curve, parameter) - if a vertex bounds an edge.

* A point on a curve on a surface (Geom_Sur face, Geom2d_Curve, parameter) - if a
vertex bounds an edge lying on a surface.

* A point on a surface (Geom_Sur face, Uparameter, Vparameter) - if a vertex bounds a
face.

Geometry in BRep_TEdge

BRep_TEdge geometry is stored as a list of curve representations that can be :
* A 3D curve and two parameters on a curve (Geom_Curve, FirstParameter, LastParameter).

* A curve on a surface, two parameters on a curve and two pairs of parameters on a surface (Geom2d_Curve,
FirstParameter, LastParameter, Geom_Surface, FirstUVCoord, LastUVCoord).

The SameParameter property indicates whether different representations of the edge are parametrized
synchronously i.e., points with the same parameter value on the 3D curve and each of 2D curves coincide (within

the edge’s tolerance)

Geometry in BRep_TFace

BRep_TFace geometry is stored as a Geom_Surface

Geom_Surface

BRep_TFace

Precision in B-Rep

Several geometric representations may be attached
to a topological (B-Rep) object. For example, a
vertex can be represented by:

* 3D point;
* parameter on a curve;
* pair of parameters on a surface.

These representations are similar but rarely identical.
For modeling algorithms, it is necessary to know
exactly the precision associated with this
approximation. The numeric value of this precision is
associated with each B-Rep shape and is called
tolerance. It defines the zone in which all
geometrical representations of the object are
located.

In BRep_TVertex precision defines the radius of
a sphere around a 3D point:

®

In BRep_TEdge precision defines the radius of a
pipe around a 3D curve

In BRep_TFace precision defines the thickness
above and below a surface

Thickness

Precision in B-Rep

Since tolerance is associated with geometry carriers, it is defined by the algorithms creating
or modifying the geometry in B-Rep.

Open CASCADE Technology requires that:

Tolerance(Vertex) >= Tolerance(Edge) >= Tolerance(Face)

Package: BRepAdaptor

OCCT enables topological entities usage in geometric algorithms via the adapter pattern.
Adapters for boundary representation work as trimmed curves and surfaces, thus eliminating
the necessity of manual trimming. The following adapters are available:

« BRepAdapter_Curve — curve adapter accepting edge.
« BRepAdapter_Curve?d — curve adapter accepting edge and face.
« BRepAdapter_CompCurve — curve adapter accepting wire.

« BRepAdaptor_Surface - surface adapter accepting face.

Note: Handle version of adapters are available. For instance, BRepAdaptor_HSurface class
is handled-version of the surface adapter.

B-Rep particularities

Representation of the same face in 3D space (3D topology) and in parametric space (UV topology)
are usually topologically similar.

E2

E1
@ @
E 3
E4
E4 U

Sometimes 3D topology and UV topology are different. It is the case of seam edges and
degenerated edges.

B

-Rep particularities

E2

A seam edge is an edge, which defines a seam on a closed face (usually built on a periodic
surface). In this case, one 3D topology corresponds to several UV topologies.

An edge is said to be degenerated when one or several UV 2d curves correspond to a single 3D

vertex. Such edge does not have a 3d curve representation and includes the same vertex twice
(with opposite orientations).

v E4 y E1
i
E2 E3 _E1 3
E3 E3RorF E3 E3
= CE2 b VAN
= U E2

Shapes construction

Open CASCADE Technology supplies several packages that provide a high-level APl to modeling algorithms.
This APl is both simple and powerful:

« simple because only one call to a function is needed to create an object

gp Pnt aP1(10.0, 0.0, 0.0), aP2(20.0, 0.0, 0.0);
TopoDS Egde E = BRepBuilderAPI MakeEdge (aPl, aP2);

« powerful because it includes error handling and access to extra information provided by the algorithms

gp Pnt abP1(10.0, 0.0, 0.0), aP2(20.0, 0.0, 0.0);
BRepBuillderAPI MakeEdge aME (aPl, aP2);

// Construction state.
if (!'aME.IsDone())
std::cout << "Error. MakeEdge failed:" << aME.Error () << std::endl;

// Edge extraction from algorithm.
TopoDS Edge ankEdge = aME.Edge () ;

Package: BRepBuilderAPI

This package contains classes for:

» Direct construction of the topological objects from geometric entities or combine topological
items to collection-like shapes.

BRepBullderAPI_MakeVertex: builds a vertex from points.

BRepBuilderAPI _MakeEdge, MakeEdge?d: build edges from curves.
BRepBuillderAPI_MakePolygon: builds a wire from points.

BRepBui lderAPT _MakeWire: builds a wire from edges.

BRepBuillderAPI _MakeFace: builds a face from a surface.
BRepBuillderAPI_MakeShell: builds a shell from a surface (splits to C2 patches).
BRepBuillderAPI_MakeSolid: builds a solid from shells.

« Modifying objects:

BRepBuillderAPI_Transform: applies transformation to a shape.
BRepBuillderAPI_Copy: makes deep copy of a shape.
BRepBuillderAPI_Sewing: builds a shell from a set of faces by merging boundary edges.

Package: BRepPrimAPI

J.-"___|I:"

ST =7 AR S
This package contains classes for: \3/ , \jj . “ | I <
 Creating primitive objects: s < . ! 4 ’ ’ x*‘\\,
« BRepPrimAPI_MakeBox
- BRepPrimAPI_MakeWedge A |)
« BRepPrimAPI_MakeSphere /}f /,9?”’”/ A’; 'E*{n_g,:
« BRepPrimAPI_MakeCone f ‘ .'a_/l f*le: avinns
+ BRepPrimAPT _MakeCylinder AT 4
« BRepPrimAPI_MakeTorus
« BRepPrimAPI_MakeHalfSpace 5 A
* Creating sweeps: | | = |
BRepPrimAPI_MakePrism 4 .4 .
+ BrepPrimAPI_MakeRevol e e K
E:E ? (f; = Prism Revol

Location modification

Data sharing concept, available in OCCT, allows re-use topological information and instance model several
times by means of the location. Location within a shape is a set of consecutive transformations which are
manipulated as a single transformation.

Note: empty location and existing identical locations are considered as different. As a result, IsSame () check
will return false.

Location methods are as follows: // Construct location.
. gp Axl axis(gp Pnt (aX, a¥Y, az),
« Location gp Vec (aDX, aDY, aDZ));
 Move
gp Trsf T;
 Moved T.SetRotation (axis, aR);

// Update existing location.
aShape.Move (T) ;

Orientation: vertex within an edge

OCCT orientation concept aims at the completion of
the boundary representation by information about
inner and outer regions. This information is a set of
rules affecting shape correctness.

The orientation itself has no meaning for a vertex.
Vertex orientation makes sense only when vertex
bounds some edge. Edge is constructed using a pair
of vertices (at least one vertex using twice in case of
the periodic curve); the first vertex has
TopAbs_FORWARD orientation, and the second one

has TopAbs_REVERSED orientation by a convention.

Note: BRepBuillderAPI_MakeVertex constructs a
vertex with TopAbs_FORWARD orientation.

gp Pnt abP1(10.0, 0.0, 0.0), aP2(20.0, 0.0, 0.0);

TopoDS Edge anEdge = BRepBuilderAPI MakeEdge (aPl,

TopExp Explorer anExXpEV (ankEdge, TopAbs VERTEX) ;
for (; anExpEV.More(); anExpEV.Next ())
{
const TopoDS Vertex& aVvV =
TopoDS: :Vertex (anExpEV.Current ()) ;
const gp Pnté& aPnt = BRep Tool::Pnt(aVv);
if (aV.Orientation() == TopAbs FORWARD)
{
std::cout << "Forward vertex is:
<< abPnt.X() << ™ "
<< abPnt.Y() << ™ "
<< aPnt.Z() << std::endl;

}
else if (aV.Orientation() == TopAbs REVERSED)

{
// There is inner orientation. That is why
// else-if expression is needed.
std::cout << "Reversed vertex is:
<< abPnt.X() << " "
<< abPnt.Y () << ™ "
<< aPnt.Zz () << std::endl;

abP2);

Orientation: edge within a wire

The face is a part surface bounded by edges. Edges are organized into wires to be able to track each loop
(outer or inner) individually.

There are no limitations when a wire is free; edges can be added to wire without constraints.

The right-hand rule comes in action when wire belongs to a face; each edge in a wire should be orientated
to have material on a left side according to parameter increasing direction on a curve. What to do with
the wrongly oriented curve?

It is possible to rebuild a curve, but it is preferable to revert the underlying curve virtually. The second
option was chosen in the OCCT.

Orientation: face orientation in a solid

Solid is a part of modeling space bounded by faces organized into a shell. Normals in the solid should point
outside the material by a convention. Differential geometry states that normal to surface in point can be evaluated
using the following formula (“x” stands for cross product):

N(uO' UO) = S{L(uOr UO) X S{,(UO, UO)

Normal is calculated up to a sign, so an alternative formula exists where partial derivatives are swapped (the OCCT
uses the formula presented above). How to ensure the correct normal orientations in a solid?

The face orientation determines the sign before normal:
* TopAbs_FORWARD — normal is evaluated according to the formula above.
* TopAbs_REVERSED — normal is multiplied by -1.0.

Note: solid may represent the whole modeling space except a part of space bounded by solid boundaries. Normals
will point inside the bounded part of space in that case.

Modeling APIl: BRepAlgoAPI

The OCCT has two implementations of the Boolean algorithm. Internally, they are called “old” and “new”
algorithm. The old algorithm is not maintained anymore and marked obsolete. The OCCT's “new” Boolean
Algorithm is available in the BRepA1goAPT package. The following algorithms are available:

o Cut (BRepAlgoAPI_Cut).

* Fuse (BRepAlgoAPI_Fuse).

* Common (BRepAlgoAPI_Common).
» Section (BRepAlgoAPI_Section).
« Splitter (BRepAlgoAPI_Splitter).

e
//
/| /o)
: _ 1 Intersaction

Modeling API: BRepOffsetAPI

This package provides additional tools for construction, such as:

~\\\ .\-\ x‘r:?_:_-_
il
i

BRepOffsetAPI_ThruSections — builds a shell or a solid from a sequence of wire profiles.
BRepOf fsetAPI_DraftAngle —tapers a set of faces of a shape with a given angle.
BRepOf fsetAPI_MakeOf fsetShape — builds offset shape on the given shape.

BRepOffsetAPI_MakeThickSolid - builds a hollowed solid from a given solid and a set of faces to be
removed.

BRepOf fsetAPI_MakePipe — builds a pipe shape by sweeping a base shape (profile) along a wire (spine).

BRepOffsetAPI_Makekvolved — builds an evolved shape from a planar face or wire (spine) and a wire
(profile).

by *,
, -
Fed NN R .
-~ .
- lu DiFschar ™,
.,
, Al - =
\\ A l! " e
Aengla - e
e e —
. — -

=" HNpitra Flara
-

T profile

Modeling API: BRepFilletAPI

This package provides classes for making fillets and chamfers:
« BRepFilletAPI_MakeFillet2d
 BRepFilletAPI_MakeFillet

« BRepFilletAPI_MakeChamfer

Modeling API: history of modifications

Sometimes, built-in operations are unable to solve a modeling problem. A custom modeling pipeline
is used in that case. The OCCT does not have persistent indexing; topological items may change
unpredictably after an operation. History support allows overcoming this issue. Modeling algorithms
have three methods that allow to know the modification status of an initial shape 'S' after a
topological operation:

« IsDeleted(9) tellsif the shape 'S' has
been deleted by the algorithm.

« Modified(S) lists shapes that represent
the modified state of the shape 'S' (such

shapes have the same underlying geometry

« Generated(S) lists shapes generated by ¥
the algorithm from the shape 'S’ (such
shapes have new underlying geometry not

existing in 'S") A ' /m\

About Open Cascade

It is a software development company which is laser-focused on digital transformation of industries through
the use of 3D technologies.

Open Cascade offers a wide range of high-performance proprietary 3D software tools both open-source and
commercial. The first ones have been developed, maintained and continuously improved since 2000. Whereas
the second ones have been progressively aggregated in the Commercial Platform based on which the company
offers creating modern tailor-made industrial solutions that meet even the most sophisticated client'’s
requirements.

Moreover, Open Cascade expands its portfolio by offering end-user industrial software products and delivering
software customization and integration services. Open Cascade provides its solutions and services worldwide.
The company is a part of the Capgemini’s Digital Engineering and Manufacturing Services global business line.

Learn more about Open Cascade at ~ Www.opencascade.com

OPEN
o CASCADE

Backing your path to digital future

